Multiphysics Simulation and Experimental Investigation of Aluminum Wettability on a Titanium Substrate for Laser Welding-Brazing Process
نویسندگان
چکیده
The control of metal wettability is a key-factor in the field of brazing or welding-brazing. The present paper deals with the numerical simulation of the whole phenomena occurring during the assembly of dissimilar alloys. The study is realized in the frame of potential applications for the aircraft industry, considering the case of the welding-brazing of aluminum Al5754 and quasi-pure titanium Ti40. The assembly configuration, presented here, is a simplification of the real experiment. We have reduced the three-dimensional overlap configuration to a bi-dimensional case. In the present case, an aluminum cylinder is fused onto a titanium substrate. The main physical phenomena which are considered here are: the heat transfers, the fluid flows with free boundaries and the mass transfer in terms of chemical species diffusion. The numerical problem is implemented with the commercial software Comsol MultiphysicsTM, by coupling heat equation, Navier-Stokes and continuity equations and the free boundary motion. The latter is treated with the Arbitrary Lagrangian Eulerian method, with a particular focus on the contact angle implementation. The comparison between numerical and experimental results shows a very satisfactory agreement in terms of droplet shape, thermal field and intermetallic layer thickness. The model validates our numerical approach.
منابع مشابه
Effect of Welding Heat Input on the Intermetallic Compound Layer and Mechanical Properties in Arc Welding-brazing Dissimilar Joining of Aluminum Alloy to Galvanized Steel
The effect of weld heat input on the formation of intermetallic compound (IMCs) layer during arc welding–brazing of aluminium and steel dissimilar alloys, was investigated through both finite element method (FEM) numerical simulations and experimental measurements. The results of FEM analysis as well as welding experiments indicated that increasing weld heat input increases the thickness of IMC...
متن کاملExperimental and Numerical Investigation of Laser Assisted PC to Polycarbonate Welding
Laser welding is a novel method for direct joining of metals and polymers, which leads to a mechanical and chemical bond between metal and polymer. In this study, feasibility of dissimilar joining between St12 and polycarbonate is studied theoretically. Then, the ND: YAG laser is implemented to join St12 and Polycarbonate. Empirical results indicate creation of a joint between St12 and polycarb...
متن کاملExperimental and Numerical Investigation of Laser Assisted PC to Polycarbonate Welding
Laser welding is a novel method for direct joining of metals and polymers, which leads to a mechanical and chemical bond between metal and polymer. In this study, feasibility of dissimilar joining between St12 and polycarbonate is studied theoretically. Then, the ND: YAG laser is implemented to join St12 and Polycarbonate. Empirical results indicate creation of a joint between St12 and polycarb...
متن کاملLaserHybrid Welding and LaserBrazing: State of the Art in Technology and Practice by the Examples of the Audi A8 and VW-Phaeton
Abridged version: In view of the demands made by the end users in the field of application of vehicle construction for an ever-higher product quality and improved performance, continuous innovations are considered to be absolutely decisive for being successful. This especially applies to the welding technology, and therefore the goal is to develop new, better and more powerful welding processes...
متن کاملAdvances in Welding Metal Alloys, Dissimilar Metals and Additively Manufactured Parts
Nowadays, strong, light-weight, multi-functional, high performing products are key for achieving success in the worldwide markets. Meeting those requirements calls for enabling technologies that lead to innovative and sustainable manufacturing [1]. A joint technique is one or a combination of the available mechanical, chemical, thermal processes to create a bond between materials with a number ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017